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Abstract

The overall correctness of large-scale systems composed
of many groups of replicas executing BFT protocols scales
poorly with the number of groups. This is because the
probability of at least one group being compromised (more
than 1/3 faulty replicas) increases rapidly as the number
of groups increases. In this paper we address this prob-
lem with a simple modification to Castro and Liskov’s BFT
replication that allows for arbitrary choice of n (number
of replicas) and f (failure threshold). The price to pay is
a more restrictive liveness requirement, and we present the
design of a large-scale BFT replicated system that obviates
this problem.

1 Introduction

Byzantine-fault-tolerant replication is a popular tool to
ensure correct and highly-available operation of important
services when individual components may fail arbitrarily
(e.g., due to intrusions or software errors).

Numerous Byzantine-fault-tolerant (BFT) replication
protocols have been proposed [18, 5, 1, 6], and more
recently these protocols have been used as building
blocks to develop large-scale systems like Farsite [2],
OceanStore [11], or Rosebud [20]. These large-scale sys-
tems are usually organized as follows. The system state is
split into a number of objects and each object is managed
by a separate state machine replication group, with vary-
ing assignment strategies. Each state machine replication
group is implemented by a small subset of the system mem-
bers which create the illusion of the object being hosted by
a single correct and available server.

A problem that arises in such systems is that, assum-
ing some fixed fraction of faulty nodes in the system, the
probability of a single replica group exceeding its failure
threshold (usually 1/3 of faulty nodes), and therefore work
incorrectly, increases rapidly as the number of groups in the
system increases. Once the failure threshold is exceeded
in a single group, the correctness of the system as a whole

might be compromised.
This problem is illustrated by Figure 1 that shows how

the probability of having at least one group exceeding its
failure threshold varies with the number of groups in the
system. The different curves represent different fractions of
faulty nodes in the system and values of f (where n = 3f +
1 is the number of replicas in each group). This shows that
even with 1% faulty nodes and f = 2 there is a reasonable
chance that one of the groups will not meet its correctness
condition when the number of groups in the system goes
beyond 100.
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Figure 1. Probability of the existence of faulty
groups, as a function of the number of
groups, for different fractions of faulty nodes
in the system.

This problem is exacerbated in systems where the frac-
tion of faulty nodes is relatively high, even if that only oc-
curs for a short period of time. For instance, during the early
stages of a worm outbreak the fraction of nodes that do not
behave correctly may increase substantially for some time,
even beyond 1/3 of the system nodes, which would cause
most of the replication groups that implemented the above



protocols to break, even if we configured the system with a
large value of f .

One of the ways to overcome this issue is to modify BFT
replication protocols to relax the consistency criteria of the
system. E.g., the system described in [13] is able to tolerate
up to 2/3 of faulty replicas in a BFT group by providing
weaker “fork” semantics.

This paper proposes an alternative approach based on
the following principles. First, we present a modification
to Castro-Liskov’s Practical Byzantine Fault Tolerance Pro-
tocol (CLBFT) that allows it to tolerate any number faults in
the replica group up all but one replica, without sacrificing
the semantics provided by the protocol.

The problem with this modified version of CLBFT is that
it has an increased chance of running into liveness prob-
lems. In this paper we also present two strategies to address
this new problem in the context of a large-scale system with
multiple replication groups.

The first strategy is to treat each modified CLBFT group
as a node that executes a replication protocol tolerant to fail-
stop (silent) failures. This strategy has some limitations,
namely in terms of its performance, so we also present the
design of a system called ShowByz that overcomes the live-
ness problems of individual groups. ShowByz assigns two
groups to each subset of the state, a primary and a backup
group. Periodically the backup group checks the liveness
of the primary group and transfers the missing state from
that group. If the backup group detects problems then it
takes over the responsibility, allowing operations to pro-
ceed despite liveness problems in one of the groups. We
also show how to address issues like running operations
efficiently (without the need of contacting multiple replica
groups), and yet dealing with the possible loss of operations
that executed in a group that subsequently halted.

2 Modified CLBFT

One of the key aspects of ShowByz is the use of a mod-
ified version of Castro-Liskov’s BFT state machine repli-
cation protocol [5]. This simple modification will enable
the protocol to have improved safety properties (in particu-
lar, overcoming the barrier of requiring less than 1/3 faulty
nodes to provide correct behavior), but at the expense of
sacrificing liveness, even with a small fraction of faulty
nodes.

The modification is based on the simple observation that
CLBFT’s operations are justified by certificates. These are
matching statements authenticated by a quorum of 2f + 1
out of the 3f + 1 system nodes.1 The key to the safety
properties of CLBFT is that these quorums that form the
certificates intersect in at least one non-faulty replica, and

1Occasionally there are certificates with f + 1 nodes, whenever the
presence of a single non-faulty node suffices.

Q1 Q2

Figure 2. A system with 10 replicas, 7 of
which are faulty (represented by a shaded cir-
cle), and two quorums, Q1 and Q2, which in-
tersect in a single non-faulty replica (marked
by an arrow).

non-faulty replicas never perform actions that would break
the safety properties of the system (in particular by assign-
ing the same sequence number to different operations).

This explains why CLBFT requires 3f + 1 replicas to
achieve both safety and liveness: Assuming a total of n
replicas, the algorithm must proceed after communicating
with a quorum of n − f replicas, since f replicas might be
faulty and not respond. However, the quorum intersection
properties must ensure that any two quorums intersect in at
least one non-faulty replica. Since the size of the intersec-
tion between two quorums is n−2f , this yields n−2f > f ,
or n > 3f .

Our insight is to increase the quorum size (in proportion
to the number of replicas), sacrificing liveness, but preserv-
ing safety by maintaining the quorum intersection proper-
ties.

In particular, we can use a quorum size of Q = bn+f
2 c+

1 for an arbitrary choice of f and n (with the only restric-
tion that n > f ). For instance, if we pick n = 10 and
f = 7, this yields a quorum size of 9 replicas, as depicted
in Figure 2. This way, any two quorums will still intersect
in one non-faulty replica, which guarantees safety despite
a large fraction (in this case 70%) of faulty replicas. The
downside is that there are liveness problems when two or
more replicas (20%) are unavailable, since we cannot form
a quorum of seven replicas at that point. In the next sec-
tions we show how a large-scale system that uses modified
CLBFT can address the liveness issues.

3 Large-Scale BFT Systems

The modifications to CLBFT presented in the last sec-
tion enable us to overcome the main problem raised by
large-scale systems that have multiple BFT groups (namely,
that the likelihood of one of the groups overcoming the 1/3
faulty nodes barrier increases rapidly with the size of the
system). Unfortunately, this is done at the expense of in-
creasing the likelihood of having liveness problems, so we
need to address this issue.



In this section we explore two different strategies for
building systems based on multiple groups that use the mod-
ified CLBFT from the previous section.

3.1 Objectives

The overall goal of the system design we will present
in this section is build a system that is composed of multi-
ple objects, where different objects may be implemented by
different replica groups.

Clients can perform arbitrary operations on any object,
just like they would on a single state machine replication
group, with the only difference that they have to identify
the object where the operation is going to run in the library
call that invokes the operation.

The semantics provided by our system is linearizabil-
ity [9] of operations on individual objects. This means op-
erations in a particular object appear to execute in some
sequential order that is consistent with the real-time order
in which the operations are executed. Our current design
does not support multi-object operations, this is left as fu-
ture work.

3.2 Assumptions

We assume an asynchronous distributed system with a
large number of nodes where the system membership might
constantly change.

We assume the existence of a configuration manager, an
oracle that can provide any system node with the current
system configuration which consists of the current set of
system members, the respective addresses and public keys,
a partitioning of the service state into objects, and a an as-
signment of one or more replica groups for each object.

In practice, the system configuration may not have to in-
clude the partitioning of the system state and group assign-
ments, since these may be implicit as happens in assignment
schemes like consistent hashing [10].

In our final system design, we intend to implement this
oracle as a BFT state-machine group of highly safe nodes,
but details are left as future work.

To ensure safety, we assume that the correctness condi-
tion of each modified CLBFT replication group is met, i.e.,
its (possibly large) failure threshold f is not exceeded. For
now we will assume that this is true all the time about ev-
ery group that is formed in any configuration. In the future
we intend to relax this assumption to state that this failure
threshold cannot be exceeded during a time window of vul-
nerability, and define that window in terms of the occur-
rence of certain events.

For liveness we require eventual synchrony (as CLBFT
also requires [5]), but we must also assume that “enough”
modified CLBFT replica groups will make progress “while

they are needed”. After we explain our system design will
restate this more precisely.

3.3 Alternative 1: Higher-Level Fail-Stop
Replication

Our first attempt at a system design is to consider each
modified CLBFT group to be a node that participates in
a (higher level) replication protocol that tolerates fail-stop
failures (e.g., Paxos [12]). The idea of reducing Byzantine
behavior to fail-stop faults using replication, and then us-
ing a protocol that tolerates fail-stop nodes was originally
proposed by Schlichting and Schneider [21], and was more
recently adopted by Steward [3] in the same way we pro-
pose of composing CLBFT with Paxos.

The main advantage of this algorithm lies in its simplic-
ity, and proven correctness, given that the higher-level fail-
stop replication protocols are well-studied.

However, this solution may pose some problems when
deployed in a wide-area setting. If all replicas of the CLBFT
groups are located in the same site as proposed in Stew-
ard [3], then there is an increased likelihood of correlated
failures (e.g., if all replicas are managed by the same admin-
istrator who repeats the same mistake), which could cause a
Byzantine fault of a participant of the higher level fail-stop
replication protocol, which is enough to break safety.

If, on the other hand, replicas of each CLBFT group
are located in different sites, then the latency of executing
each operation is exacerbated by the fact that each step of
the higher level replication protocol requires a lower-level
CLBFT operation among distant replicas.

3.4 Alternative 2: ShowByz

To overcome the problems of liveness of individual
replica groups without incurring a possible performance
degradation, we introduce a new design called ShowByz.
ShowByz is efficient since each operation only needs to be
executed in a single modified CLBFT group in the normal
case, yet it can recover from a situation where the modified
CLBFT that executed the operation halts because of live-
ness problems.

In summary, the way we achieve this is using a primary-
backup protocol among replica groups, where operations
are executed speculatively at the primary, and the result only
becomes definitive after the backup group has copied the
new state that reflects the operation from the primary group.
Speculative execution has been proposed in the context of
other client-server systems [16], and even Byzantine-fault-
tolerant replicated systems [17]; we just apply that idea in a
different context of executing operations speculatively in a
single Byzantine replication group, and not having to wait
for the operation to be propagated to the backup group. As



in these systems, clients checkpoint their state and continue
their execution based on the predicted results. If the predic-
tion is correct, the checkpoint is discarded. If the predicted
result turns out to be incorrect, the client rolls back to a pre-
vious state and the operation is retried (for details see [16]).
If one of the groups fails, which would cause the defini-
tive execution to halt, a configuration change is required to
pick new primary and backup groups and continue to make
progress. Note that, even though the speculative executions
are expected to be normally correct, the strong consistency
conditions are guaranteed to hold only with respect to the
definitive results [16].

In the remainder of this section we will present a pre-
liminary design of ShowByz. Some details will be omit-
ted due to space limitations or left as future work. We will
begin by explaining how the system works in the normal
case when all the groups are live and there are no configura-
tion changes (Section 3.4.1); then we explain how the sys-
tem reacts to liveness problems in individual groups (Sec-
tion 3.4.2); we discuss how the system handles configura-
tions changes (Section 3.4.3); and we conclude with a brief
correctness argument in Section 3.4.4.

3.4.1 Normal Case

In the normal case clients start by invoking a modified
CLBFT operation on the primary group, which executes
through the normal CLBFT protocol [5], returning the re-
ply of the operation to the client.

Periodically, the backup group checks the liveness of the
primary group, and transfers a snapshot of the service state
as part of the liveness check. We intend to take advan-
tage of BFT’s checkpointing protocol [5] to implement this.
CLBFT takes a logical snapshot (called a checkpoint) of the
service state periodically to enable bringing slow replica up-
to-date. Our protocol will mark some of these checkpoints
as being the ones that will be transferred to the backup
group, in particular those that occur when approaching the
end of the liveness check interval.

The liveness check is implemented by having each
replica in the backup group individually acting as a client
of the primary group, executing a special state machine op-
eration, which also reads the latest snapshot of the service
state. (For efficiency it reads only the subset of the state that
has been modified since the last transferred checkpoint.)
There is also a second special state machine operation that
acknowledges that the first operation was concluded suc-
cessfully by the backup replica.

When a quorum of backup replicas run the acknowledg-
ment operation, the liveness check is complete.

3.4.2 Liveness Problems (Faulty Groups)

The key to addressing the liveness issues raised by our
modifications to the CLBFT protocol is a takeover proto-
col, where, when the primary group fails (i.e., cannot exe-
cute operations due to liveness problems), the backup group
takes over the responsibility for running (speculative) oper-
ations.

First we will explain what happens when the primary
group fails, we will then discuss failures of the backup
group.

Primary Group Liveness Failures

When the liveness check fails, the backup replicas ex-
change signed “takeover” messages.

Once any backup replica gathers a quorum of signed
“takeover” messages, it runs a “takeover” operation on the
backup group, and after that it can start processing normal
client state machine requests.

This raises the problem that some operations may have
been lost in the meanwhile, particularly those executed
since the latest checkpoint that was successfully transferred.

As mentioned, we solve this using speculative execution
at the client, a solution that was proposed recently in the
context of other distributed systems [16]. Clients run the op-
erations on the primary group tentatively, and run a second
operation later to see if the result is definitive (i.e., to con-
firm that the state has been transferred to the backup group
successfully). If the second operation fails, the client oper-
ation must contact the backup group and possibly rerun the
operation if it hadn’t been run yet.

Backup Group Liveness Failures

It could also happen that the liveness check fails because
the backup does not execute enough takeover operations.
This could have happened due to problems in backup repli-
cas or due to communication problems, such situations are
impossible to distinguish in an asynchronous setting.

In this case the primary group can do two things. Ei-
ther it halts (assuming the worst-case scenario of a net-
work partition where the backup group has taken over), or
it optimistically continues to execute speculative operations,
which eventually may have to be rolled back.

In either case the primary group should request a config-
uration change which will select new primary and backup
groups, in order to minimize client wait time for the defini-
tive results.

An important detail is that an operation that only ran
on the backup group (after a takeover) is also considered
tentative, so when the primary group fails it is also conve-
nient (for performance reasons) to request a configuration
change.



3.4.3 Configuration Changes

The mechanism for configuration changes is also similar to
other state machine replication systems that support a dy-
namic system membership [19, 14].

When a new configuration is issued, it is propagated to
all system nodes by the oracle that produces configurations
(and also using a gossip protocol). We will describe a situa-
tion where a configuration change generates a change both
in the primary and backup groups (since other scenarios
would be optimizations of this one).

Once an old replica (either primary or backup) receives
the new configuration it runs a special “stop” operation on
the state machine. This causes the old group to stop accept-
ing normal operations except for state transfer operations
to the new group. New replicas from the primary group
will transfer state from the old groups by executing special
state transfer operations. These can be run on either group
(though the primary group is preferred for performance rea-
sons).

After the new primary group concludes state transfer, the
secondary group transfers state from the primary group and
normal operation resumes.

Clients that had tentative operations (operations that ex-
ecuted in only one of the groups) check if they were trans-
ferred by querying the new primary or backup group, and
may need to rerun them in the new groups.

The fact that the primary group in the new configura-
tion will read the state from the old groups means it can de-
cide between conflicting operations, precluding a situation
where the system state would diverge if there is a conflict
between a primary and a backup group. In this case such
divergent operations would always be considered tentative
in the old configuration, and state transfer to the new config-
uration will determine which of the two different outcomes
will prevail.

This mechanism for state transfer introduces a require-
ment for liveness of the system, which is that one of the
groups (either the primary or the backup) in each configu-
ration must remain live until state transfer to the new con-
figuration concludes.

3.4.4 Correctness

We briefly sketch an argument for why our system is cor-
rect. Given our correctness conditions, we know that every
CLBFT group in the system will meet its failure threshold,
hence will follow its specification [5]. Therefore we can
regard these as fail-stop components.

We need to argue that the definitive results meet the lin-
earizability semantics (since we do not provide any guaran-
tees on tentative results). This is true within a configuration,
since, for a result to be considered definitive, this involves

agreement among both groups, and each implements lin-
earizable semantics [5].

Across different configurations this is also true for defini-
tive results, which will be transferred to the new groups
in the same order (since state transfer reads from either
group, but the operation was executed in both). For results
that were not considered definitive we need to consider two
cases. The first case is when the object was transferred to
the new groups. In this case, the client will retry the op-
eration in one of the new groups and will see the correct
linearization of its operation. The other case is if the object
was not transferred, but the client will retry the operation
until it succeeds in applying the operation in both groups of
the same configuration, which will ensure linearizable se-
mantics.

4 Related Work

There are some proposals for large-scale systems that
tolerate Byzantine faults, e.g., Farsite [2], OceanStore [11],
or Rosebud [20]. These systems share a common design
feature that they use multiple groups executing Byzantine
replication protocols to partition the load among the system
members. Since each group runs the original CLBFT, they
only tolerate up to 1/3 faults in each replica group. Our
work is complementary to these previous systems, in the
sense that they could replace these Byzantine groups with
our two-level construction presented in the design of Show-
Byz, thereby achieving a correctness condition that would
tolerate a larger fraction of faulty nodes.

Secure peer-to-peer routing overlays [4, 8, 15] are also
instances of large-scale systems that tolerate Byzantine
faults. However, this research is rather orthogonal to our
own, since the design of secure peer-to-peer systems differs
from the pattern of multiple state machine groups. Further-
more, the design of ShowByz would probably not be ade-
quate to a highly dynamic peer-to-peer deployment where
nodes constantly join and leave the system.

The idea of using speculative execution in the context of
a client-server system was originally proposed by Nightin-
gale et al. [16]. Our work uses that idea, but applies in a
slightly different way, by executing operations speculatively
in a single Byzantine replication group, avoiding having to
wait for the operation to be propagated to the backup Byzan-
tine replication group.

The idea of reducing Byzantine behavior to fail-stop
faults using replication, and then using a protocol that tol-
erates fail-stop nodes was originally proposed by Schlicht-
ing and Schneider [21], and was more recently adopted by
Steward [3] in the same way we propose of composing
CLBFT with Paxos. However, the main purpose in Steward
was to reduce the latency of wide-area CLBFT operations,
since each local area site runs CLBFT and different CLBFT



groups from different sites run Paxos among themselves.
Douceur and Howell [7] also analyze the problem of

dealing with faulty groups in a large-scale system like Far-
site, but from a different perspective of isolating the effects
of faulty groups instead of preventing their existence.

The work of Li and Mazières [13] mentions a possibility
of changing the quorum size in a variant of the CLBFT pro-
tocol to trade liveness for safety. However, the main focus
of this work is on a weaker form of consistency that can be
achieved with the original quorum sizes (2f +1 in a system
of 3f +1 nodes) when up to 2f nodes can fail, without sac-
rificing liveness. In contrast, for arbitrary replica group size
and upper bound on the number of faulty nodes we can set
the quorum sizes that ensure linearizability, and furthermore
our work focuses mainly on the subsequent step of address-
ing the liveness issue introduced by this modification.

5 Conclusions

In this paper we address the problem of large-scale BFT
systems that contain many replica groups, where a 1/3
bound on faulty replica is likely to be exceeded in some
group. We present a new approach that provides better
safety properties (beyond this 1/3 bound) at the expense of
liveness, and we present a preliminary design of a system
that overcomes the liveness problems with a simple and ef-
ficient higher-level fail-stop replication protocol, integrated
with speculative execution.

Even though some details are still left open, we believe
our approach contains interesting insights that can be effi-
ciently used in the design of large-scale state-machine repli-
cation systems.
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