
Architecture-Driven Diagnosis of Performance Failures in a Token Ring

Andrew Williams and Priya Narasimhan
Electrical & Computer Engineering Department

Carnegie Mellon University
5000 Forbes Avenue, Pittsburgh, PA 15213-3891
andrewwi@andrew.cmu.edu, priya@cs.cmu.edu

Abstract

Communication infrastructures that provide distributed sys-
tems with key services can also end up being the medium
whereby faults propagate through the system. We have pre-
viously observed that a single faulty node can degrade the
performance of other, non-faulty nodes in the system. We
present a method for identifying the node that is the ori-
gin of the failure by examining the architecture-driven con-
strained network-flows in a distributed system. By iden-
tifying the effects of the failure on the network, combined
with our knowledge of the network-flow constraints, we can
trace the effects of the failure back to its source node. We
empirically evaluate our methods on a data set that was
generated by injecting multiple performance-faults into a
replicated middleware system with an underlying token-ring
based group communication protocol. We correctly iden-
tify the faulty node in the case of failures that significantly
change the performance characteristics of the network.

1. Introduction

Distributed systems rely on communication infrastructures
to provide clients with key services. However, these in-
frastructures are also the medium through which faults can
propagate from a faulty node, impacting the system as a
whole and causing failures in the system [8]. Quickly lo-
cating and isolating the source of the failure can reduce re-
covery time, expense, system administrator workload, and
keep the overall impact of the failure on the system to a min-
imum. This problem is complicated by the distributed na-
ture and interconnectivity of the systems themselves. Many
interrelated and interconnected components often interact
in complicated and unpredictable ways, while different fail-
ures can manifest in diverse ways at different nodes in the
system. Fingerpointing (also known as problem determina-
tion or failure diagnosis) consists of identifying a failure in
the system and tracing the source of the failure to the cul-

prit. In a distributed system, a failure can typically only
propagate through the communication infrastructure. As-
suming that the failure does not violate the group commu-
nication protocol, the failure can only propagate along the
constrained networkpath.

1.1 Problem Statement

In this paper, we look at isolating the source of a perfor-
mance fault in a distributed, replicated system using our
knowledge of the constrained network-flows and system be-
havior. This paper aims to answer the following question:
Knowing the constrained network flows and given that a
failure has occurred, can we isolate the source of the fail-
ure by monitoring simple network metrics?

1.2 Approach

In order to address our research question, we study a repli-
cated distributed system. The system runs over a token-ring
group communication protocol, called Spread [2], to main-
tain message ordering and reliability. The token-ring ap-
proach of Spread greatly constrains the network flow at any
given point in time. We inject a variety of faults into the run-
ning system and use simple fault detectors on each node in
the system. Using our knowledge of the network flows, fail-
ure detection, and overall system time (synchronized across
nodes), we locate the source of the failure in the system.

In order to detect the failures, we use a simple anomaly
detector placed at each node. The detectors monitor a num-
ber of performance metrics and examines them for anoma-
lies. The detectors are trained on normal operations of the
system and then used to determine when the monitored met-
ric is three standard deviations away the “normal”.

1.3 Contributions

We show that the source of the fault can be identified us-
ing architecture-driven network constraints and simple net-



Figure 1. Five-member node group, showing
the point-to-point token traversal and broad-
cast messages from node 5.

work metrics. The group communication protocol is both
the medium through which failures propagate, as well as
the origin of the network constraints that allow us to iden-
tify the root-cause of the failure. The main contributions of
this paper are as follows:

• Examining simple network metrics can enable us to
identify the source of performance failures, provided
that the failure does not violate the flow constraints of
the group communication protocol.

• Performance failures in a token-ring based group com-
munication protocol yield few system-wide indicators
of failure before the entire system begins showing
degradation due to a single fault.

2 Related Work

Research into fingerpointing currently focuses on correlat-
ing system metrics or identifying faulty application level
components on a causal path. Pertetet al. [8] use system
and group communication level metrics such as CPU load
and packets per second to identify the root cause of faults
in the system. After a failure has been identified; metrics
from multiple nodes are compared to see if any one node
behaves differently from the rest of the nodes in the sys-
tem. Machine-learning and time-series techniques are used
to perform fingerpointing. We leverage the same data set in
this paper.

Other research focuses on identifying faults on the causal
request path. Aguileraet al. [1] identify performance prob-
lems by treating components as black-boxes by obtaining
message-level traces of system activity.

Chenet al. [5][4][3] use runtime requests on the causal
path between components. Pinpoint [5] uses data-mining
techniques to correlate suspected failures and successful

completion requests to determine which components are
likely to be at fault. Chenet al. [3] perform statistical
analysis on the collection of path traces to identify signif-
icant deviations from the normal behavior. Kiciman and
Fox [6] further extend the Pinpoint system by building ref-
erence models of component interactions based on histori-
cal behavior.

Many of these approaches examine request or message
traces on the causal path. However, we have previously ob-
served that fault manifestations do not always restrict them-
selves to the causal path [8]. By only examining the causal
path, we may miss fault manifestations outside that path;
considering nodes outside the causal path may allow us to
more quickly pinpoint the faulty node in the system.

3. Architecture-Driven Fingerpointing

3.1 Background

Spread group communication protocol uses a token-ring ap-
proach in order to guarantee reliable, ordered message de-
livery. Token-ring protocols impose a logical ring on the set
of nodes in the group. A unique message, called a token,
circulates within the group in a fixed path using point-to-
point UDP messages. A node is only allowed to broadcast
messages, using UDP broadcast, if it holds the token. After
each node broadcasts its messages, it passes the token to the
next node in the ring. A simplified example of a five node
group, using Spread, is shown in Figure 1.

3.2 Architecture-Based Fingerpointing

The token-ring group communication protocol that we stud-
ied did not lend itself well to black-box path-based fin-
gerpointing, as all nodes would experience a performance
fault simultaneously, see Figure 2. However we also in-
vestigated if exploiting the constrained architecture of the
system might help to fingerpoint the performance faults. If
we could use the architecture, one of the first questions to
address is whether we can pick a general metric that will
allow us to fingerpoint virtually all performance failures in
the system. Many metrics simply do not make sense for this
type of analysis. For example, monitoring available mem-
ory or context switches on each node will not allow us to
fingerpoint hardware network failures. At the same time,
monitoring only packets per second will not allow to finger-
point failures caused by faults that affect system resources
like available memory, as the faults cause a system wide
drop in network traffic

Other metrics however, do allow us to look more gener-
ally at where the system is experiencing failures that affect
a node’s ability to pass traffic. In particular, if we focus
on counting sent and received tokens per node (basically a



Figure 2. Network traffic at Nodes 0-2 during
a 20% packet-loss fault. All nodes experience
the fault at the same time

token-traversal count), combined with our knowledge of the
architecturally-constrained network, we can obtain a much
clearer picture of where the network is experiencing prob-
lems. We expect that as the leader node sends more to-
kens the nodes between the leader node and the faulty node
will show an increase in token-traversal count, while nodes
downstream from the faulty node will show little increase
in the token-traversal count.

4. Experimental Setup and Data Collection

The data set used in this experiment was collected on a
replicated, distributed testbed by Pertetet al. [8]. A full
description of the experimental testbed, methods, and fault
injection framework can be found in [8].

To summarize, the experimental test bed consisted of five
nodes (four servers and one client). The servers were state-
machine replicated over Spread using the MEAD fault-
tolerant middleware that supports the state-machine replica-
tion of CORBA servers [7]. The experiment was conducted
in the Emulab distributed test bed [9]. Each node consisted
of an 850 MHz processor, 256KB cache, 512 MB ram, Red-
Hat Linux kernel 2.4.18, and was connected by a 100 Mbps
LAN. The testbed consisted of one client and four servers,
each on its own node. The client sent 1024-byte requests
every 10ms. Each run consisted of 30,00 round-trip client
requests and ran for approximately 10 minutes.

The metrics were monitored under fault-free and faulty
conditions. The overhead for the metric collection was re-
ported to be a 28% increase in response times for the Spread
traffic. The metrics collected on each node of the test bed
for each run were:

• CPU usage(%): Percentage of time the CPU is busy
executing user and kernel tasks, calculated every sec-
ond

• Available Memory (bytes): Sum of the node’s free and
cached memory, recorded every second

• Context Switch rate (per second): Number of context
switches occurring on the node per second.

• Packets (per second): Number of packets seen by the
libpcaplibrary on that node

Faults were injected at runtime into the system using the
linker’s library inter-positioning capability [8]. This allows
faults to be injected transparently into the system. All faults
were injected into node 4, which ran one of the replicated
servers. The following faults were injected into the system:

• Memory leak: A memory leak was injected by bypass-
ing the replica’sfree()system call using the intercep-
tor. The server was modified to allocate 96KB with
each request.

• Process hang: The replica’sread()call was intercepted
and delayed for several minutes.

• Packet-loss: Thesend()andrecv()calls were randomly
intercepted and messages were dropped. This dropped
incoming and outgoing packets. Each call had mes-
sages dropped at a rate of both 1% and 20%.

• Crash Fault: A replicated node was abruptly shut down
during system execution.

Each fault was injected five times into the system during
various runs, along with five fault-free runs, giving a total
of twenty-five system traces, of which twenty were faulty.

5. Results

Each faulty trace was analyzed by our simple fault detector,
which monitored the metric of packets per second in order
to give us an approximate time of when the fault began to
disrupt the system. The network traffic was then analyzed
by looking at the number of received and transmitted to-
kens per node during a three second window starting at the
time that the anomaly was first detected. The crash and pro-
cess hang faults did not trigger the anomaly detector as the
group communication protocol was able to handle the fault
with virtually no change in the network traffic. However,
all of the memory leaks and packet-loss faults significantly
impacted the network operation of the system.



5.1 20% and 1% packet loss

The faulty node was identified in all of the ten system traces
where the node was randomly dropping 20% and 1% of
packets that it recieved. In all cases, the faulty node and
its preceding node had the lowest aggregate token-traversal
count, while the other nodes had approximately the same
token-traversal count. Given that the token traverses in a
known direction, examining the sent token counts always
identified the node as the source of the failure. The max-
imum difference between the healthy and the faulty nodes
in tokens over a three second period was eight, while the
minimun was six.

5.2 96KB Memory leak

The faulty node was also identified in all of the five system
traces where the node did not free up all of the allocated
memory. In all five cases, the faulty node had the lowest
aggregate token-traversal count. The maximum difference
between healthy nodes and faulty nodes in token count over
a three second period was 76, while the minimum was 20.

5.3 Other Observations

Another interesting observation was that the faulty node
could also be fingerpointed by decomposing the aggregate
token-traversal count into received and sent tokens. A link
on both sides of a node was suspect if the node’s aggregate
token count was significantly different from the other token
counts (even if it was not the lowest). Taking this approach
caused several of the links to be identified as potential prob-
lems in the system. However, using the fact that the tokens
traverse in a known direction, links were analyzed by ex-
amining the sent and received tokens on a given link. If the
sent count from the sending node and the received count
from the receiving node were both normal, then that link
was eliminated as a suspect link. If this approach is taken,
then the links on either side of the faulty node are always
left as the only suspect links, isolating the faulty node.

6. Conclusion

The communication infrastructure that enable key services
in a distributed system are also often the source of faults
propagating through the system. We have shown that by
exploiting the architectural network-flow constraints im-
posed on a replicated system that uses a token-ring based
group communication protocol, we can correctly identify
the source of performance failures in the system with accu-
racy. These faults are particularly hard to trace as the stan-
dard application path-based approach to tracking fault prop-
agation does not work in these cases. We have also shown

that by only monitoring network statistics, we are able to
pinpoint the source of different faults, which frees us from
the problem of trying to select the right metrics to monitor
in order to catch various types of performance problems.

We intend plan to investigate other common group com-
munication protocols to see if we can extend the particular
case of the token-ring system, and apply our approach to
other types of communication protocols. In particular, it is
unclear if our approach can be applied generally or is re-
stricted to the token-ring model.

References

[1] M. K. Aguilera, J. C. Mogul, J. L. Wiener, P. Reynolds, and
A. Muthitacharoen. Performance debugging for distributed
systems of black boxes. InACM Symposium on Operating
Systems Principles, pages 74–89, October 2003.

[2] Y. Amir, C. Danilov, and J. Stanton. A low latency, loss tol-
erant architecture and protocol for wide area group communi-
cation. InInternational Conference on Dependable Systems
and Networks, pages 327–336, New York, NY, June 2000.

[3] M. Y. Chen, A. Accardi, E. Kiciman, J. Lloyd, D. Patterson,
A. Fox, and E. Brewer. Path-based failure and evolution man-
agement. InSymposium on Networked Systems Design and
Implementation, San Francisco, CA, March 2004.

[4] M. Y. Chen, E. Kiciman, A. Accardi, A. Fox, and E. Brewer.
Using runtime paths for macroanalysis. In9th Workshop on
Hot Topics in Operating Systems, Kauai, HI, 2003.

[5] M. Y. Chen, E. Kiciman, E. Fratkin, A. Fox, and E. Brewer.
Pinpoint: Problem determination in large, dynamic internet
services. InInternational Conference on Dependable Systems
and Networks, June 2002.

[6] E. Kiciman and A. Fox. Detecting application-level failures in
component-based internet services. InIEEE Transactions on
Neural Networks: Special Issue on Adaptive Learning Sys-
tems in Communication Networks, pages 16(5):1027–1041,
September 2005.

[7] P. Narasimhan, T. Dumitraş, S. Pertet, C. F. Reverte, J.Slem-
ber, and D. Srivastava. MEAD: Support for real-time fault-
tolerant CORBA. Concurrency and Computation: Practice
and Experience, Invited submission 2003.

[8] S. Pertet, R. Gandhi, and P. Narasimhan. Group communica-
tion: Helping or obscuring failure diagnosis. Technical report,
Carnegie Mellon University Parallel Data Lab Technical Re-
port CMU-PDL-06-107, 2006.

[9] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad,
M. Newbold, M. Hibler, C. Barb, and A. Joglekar. An inte-
grated experimental environment for distributed systems and
networks. InACM Symposium on Operating Systems Design
and Implementation, pages 255–270, Boston, MA, December
2002.


